Reflex inhibition of cutaneous and muscle vasoconstrictor neurons during stimulation of cutaneous and muscle nociceptors.
نویسندگان
چکیده
Cutaneous (CVC) and muscle (MVC) vasoconstrictor neurons exhibit typical reflex patterns to physiological stimulation of somatic and visceral afferent neurons. Here we tested the hypothesis that CVC neurons are inhibited by stimulation of cutaneous nociceptors but not of muscle nociceptors and that MVC neurons are inhibited by stimulation of muscle nociceptors but not of cutaneous nociceptors. Activity in the vasoconstrictor neurons was recorded from postganglionic axons isolated from the sural nerve or the lateral gastrocnemius-soleus nerve in anesthetized rats. The nociceptive afferents were excited by mechanical stimulation of the toes of the ipsilateral hindpaw (skin), by hypertonic saline injected into the ipsi- or contralateral gastrocnemius-soleus muscle, or by heat or noxious cold stimuli applied to the axons in the common peroneal nerve or tibial nerve. The results show that CVC neurons are inhibited by noxious stimulation of skin but not by noxious stimulation of skeletal muscle and that MVC neurons are inhibited by noxious stimulation of skeletal muscle but not by noxious stimulation of skin. These inhibitory reflexes are mostly lateralized and are most likely organized in the spinal cord. Stimulation of nociceptive cold-sensitive afferents does not elicit inhibitory or excitatory reflexes in CVC or MVC neurons. The reflex inhibition of activity in CVC or MVC neurons generated by stimulation of nociceptive cutaneous or muscle afferents during tissue injury leads to local increase of blood flow, resulting in an increase of transport of immunocompetent cells, proteins, and oxygen to the site of injury and enhancing the processes of healing.
منابع مشابه
Reflex inhibition of cutaneous and muscle vasoconstrictor neurons 1 during stimulation of cutaneous and muscle nociceptors
متن کامل
The effect of cutaneous mechanical stimulations of lateral plantar surface on the excitability of ipsilateral and contralateral motoneurons
Mechanoreceptors of foot sole likely contribute in the reflex regulations. Stimulation of these receptors in the lateral aspect of the foot is corresponded to the lateral plantar division of the tibial nerve. Therefore, it was hypothesized that repetitive low threshold afferents stimulation would have an inhibitory effect on the soleus H-reflexes. Methods: Sixteen normal subjects voluntarily...
متن کاملEvaluation of H-reflex recruitment curve after application of TENS on the desensitised skin of vertebral column
Electrical stimulation of neuromuscular system has been used in a variety of research and therapeutic applications. Although tri-polar transcutaneous electrical stimulation (TENS) is commonly used to change motoneuron excitabi1ity, but the effect of TENS on synaptic activities through dorsal column stimulation or cutaneous pathways is unknown. So, the aim of this research study was to determine...
متن کاملChanges in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans.
Motor or sensory activity in one arm can affect the other arm. We tested the hypothesis that a voluntary contraction can affect the motor pathway to the contralateral homologous muscle and investigated whether alterations in sensory input might mediate such effects. Responses to transcranial magnetic stimulation [motor-evoked potentials (MEPs)], stimulation of the descending tracts [cervicomedu...
متن کاملDifferential effects of plantar cutaneous afferent excitation on soleus stretch and H-reflex.
Previous studies have demonstrated that plantar cutaneous afferents can adjust motoneuron excitability, which may contribute significantly to the control of human posture and locomotion. However, the role of plantar cutaneous afferents in modulating the excitability of stretch and H-reflex with respect to the location of their excitation remains unclear. In the present study, it was hypothesize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 111 9 شماره
صفحات -
تاریخ انتشار 2014